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INTRODUCTION 
 
 The parameters that affect jet length and breakup times are fairly well known, but there is 
some controversy over the exact nature of the dependencies.  Walsh, J.M. (1984), theorized that the 
dependence of jet length would take a particular form based on his determination of a dimensionless 
parameter for the problem and numerical experiments in which initial perturbation strengths were 
varied (ref. 1).  Walsh did not present comparisons with experimental results.  Chou, P.C. (1986), 
has presented a variety of different jet breakup models with some data comparisons (ref. 2).  

Mostert, F.J. (1995), has suggested that breakup time is proportional to 

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where m is the 

accumulated jet mass and v is the jet velocity associated with the final accumulated jet mass versus 
jet velocity characterization starting from the jet tip (ref. 3).  The values of m  and v  are 
respectively the jet mass and the velocity difference of the portion of jet in question.  For a typical 

shaped charge, 

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 is closely related to Walsh’s dimensionless parameter.  

 
 

BREAKUP FORMULATION 
 
 The analysis and data provided are for ductile jets, i.e., the radius at the neck goes to zero at 
failure.  Walsh theorized that the final length Lb of an element of stretching (elastic perfectly plastic) 
jet with initial length L0 should be given by (eq. 1) 
 

 
L L

u R C
b

x










0

2 3 2 3

1 3 0 05 0 22

/ /

/ . .
   

, 
 


u Rx

2 2
    (1) 

 

Where all parameters are defined at the moment of jet formation,  is a dimensionless parameter, ux 

is velocity gradient, R is jet radius,  and  are respectively jet strength and density and   is a 
perturbation strength term. Walsh was led to this theory by dimensionless analysis and numerical 
simulations in which he investigated the effects of various types of perturbations and perturbation 
strengths.  Walsh made no comparisons with experimental data.  Let L0 be a differential increment of 

jet length dL0, then u
dv

dL
x 

0

 where dv is the velocity difference across the increment. 

 
Then (eq. 2) 
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Finally (eq. 3) 
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In the virtual origin approximation (Chou) dLb=tbdv. 
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Hence (eq. 4) 
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This equation can be rearranged into a form in which the quantities that can be measured or 

estimated, tb  and 
dm

dv

*

 are separate from those that cannot be measured or estimated. 

 
 

EMPIRICALLY-BASED JET BREAKUP MODEL 
 
The resultant jet breakup formulation is (eq. 5) 
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For convenience, this ratio will be referred to as Q, the ductility factor, and is treated as an 

empirically determined material parameter.  As the quantity 
dm

dv

*

 is essentially invariant after jet 

breakup, it can be determined from x-rays of particulated jets or estimated from numerical 
simulations of shaped charge collapse and jet formation.  Table 1 presents reduced data from jet x-
rays and numerical simulations.  Figure 1 presents some shaped charge numerical simulations used 
for the data analysis. Figure 2 presents resultant plots comparing the reduced data to various levels 
of Q, the ductility factor.  
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Figure 1 
ALE modeling of shaped charges for jet 
characterization. Studies. Dislocation 
percolating on (111) plane with SFT’s 

Figure 2 
Ductility factor data for various copper 

shaped charges 
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